Question Number	Answer	Mark
1	1. (double) helix ;	
	2. deoxyribose ;	
	3. phosphate / phosphate group;	
	4. phosphodiester / phospho(di)ester / covalent ;	
	5. thymine;	
	6. guanine ;	
	7. hydrogen ;	
	8. sixteen / 16 ;	(8)

Question Number	Answer	Mark
2 (a)(i)	C;	
		(1)
Question Number	Answer	Mark
2 (a)(ii)	В;	(4)
		(1)
Question Number	Answer	Mark
2 (a) (iii)	A ;	(1)
Question	Answer	Mark
Number	Allowei	IVIAIN
2(b)	 idea of sequence of {bases / nucleotides} on DNA determines sequence on (pre-) mRNA; reference to complementary base pairing / stated example e.g. AU / CG / GC / TA (DNA: mRNA); reference to formation of bonds by condensation reaction; phosphodiester {bonds / links}; reference to RNA-polymerase; 	max (3)
Question	Answer	Mark
Number 2(c)(i)	reference to {start / stop / nonsense} (codon);	
	 start (codon) needed to begin {polypeptide synthesis / eq} / {stop / nonsense} (codon) needed to end {polypeptide synthesis /eq } / eq; 	(2)

Question Number	Answer	Mark
2(c)(ii)	 reference to {difference / variations / eq } of {exons / mRNA}; 	
	 reference to different {primary structure / sequence of amino acids}; 	
	 reference to {secondary / tertiary } structure of proteins depends on primary {structure / sequence} / eq; 	
	4. due to {change in / different} bonds;	
	5. {hydrogen / ionic / disulphide} bonds ;	
	6. reference to different 3D shape / eq;	max (3)

Question Number	Answer	Mark
3(a)	1. rhodopsin / iodopsin ;	
	Any one from:	
	2. broken down by light /	
	/ generates {action potentials / nerve impulses} /	
	/ appropriate reference to {black and white / monochromatic / colour / trichromatic} vision ;	max (2)

Question	Answer	Mark
Number 3(b)	1. sequencing of human DNA / eq;	
	 2. {provides knowledge / eq} of human genetics / eq; 	(2)

Question Number	Answer	Mark
3 (c)	lifestyle / environmental factors / eq;	
	2. such as {carcinogens / eq};	
	3. such as {diet / obesity / inactivity} / eq;	
	4. such as infections / eq;	max
	5. genes may make it more likely / eq;	(3)

Question Number	Answer	Mark
3(d)	 gene {needs to be switched on / expressed / eq}; 	
	2. by transcription factors / eq;	
	3. in order to produce {mRNA / protein / CFTR};	may
	 4. (transcription factors) might not be present / eq; 	(3)

Question Number	Answer	Mark
*3(e) QWC	(QWC - Spelling of technical terms (shown in italics) must be correct and the answer must be organised in a logical sequence)	
	1. triplet code / eq;	
	2. represents amino acid (sequence) / eq;	
	3. (mRNA) binds to ribosome / eq;	
	4. reference to {anticodon / codon};	
	tRNA decodes mRNA / provides correct amino acid / eq;	
	6. idea of two tRNA sites in the ribosome;	
	7. two amino acids brought together / eq;	
	8. joined with peptide bond / eq;	
	9. reference to peptidyl transferase;	
	10. idea that sections of DNA are {templates for / transcribed into} RNA;	max (6)

Question Number	Answer	Mark
3 (f)	1. bonds to DNA / eq;	
	2. idea of sequence of bases recognised;	
	3. (sequence of bases) has unique shape / eq;	max
	4. idea of bonding in DNA recognised;	(2)

Question Number	Answer	Mark
3 (g)	accumulation of small mutations / eq;	
	2. changes existing genes / eq;	
	3. idea of gene duplication and one mutates;	
	4. which allows mutation without losing function ;	
	(subfunctionalism) separates functions into separate genes / eq;	
	6. (retroposition) produces DNA {without introns / from mRNA} / eq;	
	idea of (frameshift) reads genetic code from new starting point;	
	8. idea that junk DNA can become an active gene;	max (5)

Question Number	Answer	Mark
3(h)	1. causes inflammation / eq;	
	2. atheroma can lead to atherosclerosis / eq;	max (2)

Question Number	Answer	Mark
3(i)	 idea of non-overlapping code ; 	
	reference to {start codon / there is a frame / RNA polymerase binding site} / eq;	
	3. only one {template / eq} strand / eq;	
	 reference to direction of reading of strand e.g. 5'-3'; 	max (2)

Question	Answer	Mark
Number		
3(j)	1. selective advantage / eq ;	
	2. (characteristic) passed to more offspring / eq;	
	3. increased frequency of allele in population / eq;	
	4. reference to speciation ;	max (3)